尤物免费在线观看_免费又色又爽又黄的小说软件_亚洲中文字幕另类图片专区_我要看免费的毛片_最近最新高清中文字幕大全_欧美性爱高清在线_性爱视屏爽妇网_高清国内白嫩美女在线观看_国产色久国产综合视频_亚洲黄色操B视频

MAPK/ERK信號通路:從基礎生物學到人類疾病的核心樞紐

MAPK/ERK信號通路:從基礎生物學到人類疾病的核心樞紐

 

1. MAPK通路簡介

絲裂原活化蛋白激酶(MAPK)級聯(lián)反應是調(diào)節(jié)多種細胞過程的關鍵信號通路,包括增殖、分化、細胞凋亡和應激反應。MAPK通路通過信號級聯(lián)發(fā)揮作用,將細胞外信號傳遞到細胞內(nèi)靶標,使細胞能夠?qū)Ω鞣N特定的細胞外刺激做出反應。MAPK通路包括三種主要激酶,即MAPK激酶激酶(MAP3K)、MAPK激酶(MAPKK)和MAPK,它們激活和磷酸化下游蛋白質(zhì)。目前的研究發(fā)現(xiàn)有四種主要且不同的MAPK級聯(lián)反應:細胞外信號調(diào)節(jié)激酶12ERK1/2)、c-Jun N端激酶(1、23)、p38 MAPK(α、β、γ和δ)和ERK5。本文重點介紹MAPK/ERK信號通路。

1.1 MAPK/ERK通路功能

MAPK/ERK通路是一條至關重要的細胞信號傳導途徑,其核心作用是將細胞外的生長因子信號(如促增殖、分化指令)逐級放大并傳遞至細胞核內(nèi),通過激活特定的轉(zhuǎn)錄因子來調(diào)控基因表達,從而主導細胞的增殖、分化、存活和代謝等多種關鍵生物學過程。ERK通路中上游蛋白質(zhì)和激酶的過度激活已被證明會誘發(fā)各種疾病,包括癌癥、炎癥、發(fā)育障礙和神經(jīng)系統(tǒng)疾病。此外,MAPK/ERK通路在器官再生過程中具有核心作用。MAPK/ERK信號傳導響應損傷刺激而迅速激活,并協(xié)調(diào)促再生機制,包括細胞存活、遷移、增殖、生長以及相關基因的轉(zhuǎn)錄和翻譯。

1.2 MAPK/ERK通路激活方式

MAPK/ERK通路主要通過配體刺激質(zhì)膜上的受體酪氨酸激酶(RTK)來激活,也可以被G蛋白偶聯(lián)受體(GPCR)激活。然后,RTK信號通過生長因子受體結(jié)合蛋白2Grb2)和SOS傳遞,激活小GTPRas,招募RasSer/Thr激酶Raf到質(zhì)膜,形成復合物,通過誘導Raf上絲氨酸殘基的磷酸化/去磷酸化來激活Raf?;钚?/span>Raf依次磷酸化并激活MEK1/2MEK1/2分別對ERK1/2蛋白進行磷酸化從而激活ERK1/2。ERK1/2通過不同亞細胞區(qū)室中的磷酸化激活或滅活多種蛋白質(zhì),也可以通過磷酸化多個轉(zhuǎn)錄因子靶點,快速穿梭到細胞核中調(diào)節(jié)細胞轉(zhuǎn)錄活性。此外,ERK1/2可以作為負反饋調(diào)控機制,磷酸化ERK通路的上游激酶,如SOSMEK。

 

1 MAPK/ERK通路調(diào)控機制和功能的簡化示意圖

圖片源于Int J Mol Sci[1]

 

2. MAPK/ERK通路與腫瘤的相關研究

MAPK/ERK通路功能障礙是多種癌癥發(fā)展的主要誘因之一。多項研究發(fā)現(xiàn)MAPK/ERK信號通路的激活可促進結(jié)直腸癌(CRC[2]、乳腺癌[3]、卵巢癌[4,5]、肝癌[6]、小細胞肺癌[7]、甲狀腺癌[8]、胃癌[9]等癌癥的發(fā)生、增殖、遷移和侵襲。直接或間接抑制MAPK/ERK信號傳導可抑制腫瘤的增殖和遷移,并減弱惡性表型[10-12]。MAPK/ERK信號與腫瘤治療耐藥性相關[13,14]。與這些結(jié)果相反,MAPK/ERK通路是膠質(zhì)母細胞瘤(GB)細胞對抗腫瘤免疫敏感性的關鍵調(diào)節(jié)因子[15]GB細胞中實驗誘導的ERK磷酸化提高了免疫檢查點阻斷(ICB)治療的存活率,重新激發(fā)并產(chǎn)生持久的抗腫瘤免疫。此外,多種化合物通過MAPK/ERK通路在腫瘤中發(fā)揮促細胞凋亡作用[16-18]。這些研究表明MAPK/ERK通路激活是腫瘤進展的一把“雙刃劍”,突出了其在腫瘤治療中的潛在價值。

 

2 PPP2R1B通過MAPK/ERK信號通路促進CRC細胞對奧沙利鉑的敏感性

(圖片源于《Cancer Cell Int[14]

 

3. MAPK/ERK通路與自身免疫疾病的相關研究

MAPK/ERK自身免疫性疾病的作用受到廣泛研究。MAPK/ERK通路介導類風濕性關節(jié)炎成纖維細胞樣滑膜細胞(RA-FLS)的增殖和遷移,并可能有助于RA的進展[19]。抑制MAPK/ERK信號通路,可減少FLS增殖并減輕RA滑膜炎程度[20]。精胺通過以MAPK/ERK依賴性方式抑制CD4 T細胞活化和T效應細胞分化來緩解多發(fā)性硬化癥疾病模型進展[21]。綠原酸可抑制葡聚糖硫酸鈉(DSS)誘導的結(jié)腸炎癥,改善結(jié)腸黏膜中MAPK/ERK通路相關蛋白的表達[22]。ERK抑制劑逆轉(zhuǎn)了綠原酸對結(jié)腸組織的保護作用。黃芩苷正丁酯通過結(jié)合ERK蛋白和抑制ROS/ERK/P-ERK/NLRP3信號通路抑制細胞焦亡,預防小鼠結(jié)腸炎[23]。在系統(tǒng)性硬化癥中,IL11依賴性ERK信號傳導介導真皮成纖維細胞激活,促進纖維化表型[24]。這些結(jié)果表明靶向MAPK/ERK通路可能是一種有前景的自身免疫疾病治療方法。

 

4. MAPK/ERK通路與心血管疾病

MAPK/ERK信號通路的異常激活廣泛參與心血管疾病的發(fā)生發(fā)展。在壓力超負荷誘導下,ERK1/2磷酸化并激活ETS2,與NFAT形成復合物,驅(qū)動心臟肥大[25]。抑制MAPK/ERK信號傳導可抑制心肌細胞的進一步肥大[26]。MAPK/ERK通路表達下調(diào)可預防AngII誘導的小鼠心臟肥大[27]。研究顯示ERK1/2信號傳導是早期彈性蛋白酶激活的重要調(diào)節(jié)劑,其藥理學抑制可能阻止主動脈瓣疾病(AVD)進展[28]。穿心蓮內(nèi)酯通過MAPK-ERK信號通路抑制細胞增殖來改善主動脈瓣增生[29]。磷酸化ERK表達增加對心肌缺血/再灌注損傷具有保護作用,減輕心肌梗死面積,減少心肌細胞細胞凋亡[30,31]。這些結(jié)果為精準靶向MAPK-ERK來預防和治療心血管疾病提供幫助。

 

5. MAPK/ERK通路與神經(jīng)退行性疾病

MAPK/ERK通路是神經(jīng)退行性疾病發(fā)展過程中與神經(jīng)炎癥相關的重要通路。研究顯示人參皂苷Rg2對阿爾茨海默?。?/span>AD)的神經(jīng)保護作用可能與MAPK-ERK通路有關[32]。抑制MAPK/ERK通路可逆轉(zhuǎn)Aβ1-42肽對神經(jīng)干細胞/祖細胞(NSPC)遷移的抑制作用,改善NSPCAD的治療效果[33]。帕金森(PD)小鼠模型中抑制MAPK信號傳導可挽救神經(jīng)元細胞死亡和運動功能障礙[34]。抑制MAPK/ERK途徑可減少LRRK2突變(帕金森病發(fā)病原因之一)細胞系中的異常自噬和細胞凋亡[35]。MAPK/ERK信號調(diào)節(jié)缺氧誘導的自噬過程,從而改善SOD1突變(肌萎縮側(cè)索硬化癥發(fā)病原因之一)運動神經(jīng)元活力[36]。因此,探索MAPK信號通路的特異性調(diào)控機制可能為開發(fā)神經(jīng)退行性疾病的新治療藥物提供線索。

 

鹽酸托哌酮誘導PD神經(jīng)保護的機制

(圖片源于《Biomed Pharmacother[34]

 

6. MAPK/ERK通路與再生

越來越多的研究強調(diào)了MAPK/ERK通路在組織和器官再生過程中的重要作用。MAPK/ERK信號通路在電離輻射后的造血重建中發(fā)揮重要作用[37]。低振幅電場通過激活MAPK/ERK通路調(diào)節(jié)內(nèi)皮血管生成,促進血管組織修復[38]。適當激活MAPK/ERK信號傳導有助于斑馬魚心臟再生[39]MAPK/ERK通路的激活有效促進牙周骨再生,并取得良好的恢復效果[40]。三七皂苷R1可以促進MAPK/ERK信號通路的激活,下調(diào)TNF-α的表達,最終上調(diào)成骨基因的表達,增強骨再生[41]。數(shù)據(jù)表明,MAPK/ERK通路調(diào)控肝祖細胞(HPC)的細胞增殖和集落形成,是肝臟再生的關鍵通路[42]。這些證據(jù)突出了靶向MAPK/ERK通路誘導組織和器官再生能力的可能性和潛力。

 

4 三七皂苷R1促進骨再生

(圖片源于《Front Bioeng Biotechnol[41]

 

云克隆助力科學研究,為廣大科研人員提供相關檢測試劑產(chǎn)品,相關靶標核心貨號如下

靶標

核心貨號

靶標

核心貨號

靶標

核心貨號

MAPK1

A930

MAP3K1

B145

FOS

B291

MAPK3

B357

MAP3K5

B358

GRB2

C514

MAPK6

D566

MAP3K6

D558

JUN

B292

MAPK7

B431

MAP3K7

D567

MEF2A

C647

MAPK8

B156

MAP3K12

D572

MYC

B290

MAPK9

D576

MAP4K1

D551

PAK1

H469

MAPK10

B869

MAP4K5

B135

PAK2

H468

MAPK11

B435

MAPKAPK2

B460

RAC1

M427

MAPK12

D577

MAPKAPK3

B632

RAF1

C232

MAPK13

D578

DUSP1

C902

RASA1

B616

MAPK14

B206

DUSP5

F975

RPS6KA1

M085

MAP2K1

D559

DUSP6

F976

RPS6KA5

M090

MAP2K2

D562

DUSP3

F973

SHC1

E671

MAP2K3

D563

DUSP9

F979

TRADD

M390

MAP2K4

D564

ATF4

B385

TRAF2

G752

MAP2K6

B721

CDC42

E614

TRAF6

G751

MAP2K7

D560

DAXX

C259



更多科研試劑,歡迎訪問云克隆官方網(wǎng)站:http://19230.cn/

 

參考文獻

[1]Wen X, Jiao L, Tan H. MAPK/ERK Pathway as a Central Regulator in Vertebrate Organ Regeneration. Int J Mol Sci. 2022;23(3):1464.

[2]Bai X, Wei H, Liu W, et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut. 2022;71(12):2439-2450.

[3]Wu J, Li J, Xu H, Qiu N, Huang X, Li H. Periostin drives extracellular matrix degradation, stemness, and chemoresistance by activating the MAPK/ERK signaling pathway in triple-negative breast cancer cells. Lipids Health Dis. 2023;22(1):153.

[4]Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal. 2023;21(1):144.

[5]Chen K, Liu MX, Mak CS, et al. Methylation-associated silencing of miR-193a-3p promotes ovarian cancer aggressiveness by targeting GRB7 and MAPK/ERK pathways. Theranostics. 2018;8(2):423-436.

[6]Huang K, Liu Z, Xie Z, et al. HIGD2A silencing impairs hepatocellular carcinoma growth via inhibiting mitochondrial function and the MAPK/ERK pathway. J Transl Med. 2023;21(1):253.

[7]Wang Z, Kan G, Sheng C, Yao C, Mao Y, Chen S. ARHGEF19 regulates MAPK/ERK signaling and promotes the progression of small cell lung cancer. Biochem Biophys Res Commun. 2020;533(4):792-799.

[8]Zhang HM, Li ZY, Dai ZT, et al. Interaction of MRPL9 and GGCT Promotes Cell Proliferation and Migration by Activating the MAPK/ERK Pathway in Papillary Thyroid Cancer. Int J Mol Sci. 2022;23(19):11989.

[9]Ma F, Yao J, Niu X, Zhang J, Shi D, Da M. MARK4 promotes the malignant phenotype of gastric cancer through the MAPK/ERK signaling pathway. Pathol Res Pract. 2024;261:155471.

[10]Hou J, Chen Q, Huang Y, Wu Z, Ma D. Caudatin blocks the proliferation, stemness and glycolysis of non-small cell lung cancer cells through the Raf/MEK/ERK pathway. Pharm Biol. 2022;60(1):764-773.

[11]Zhang H, Liu J, Dang Q, et al. Ribosomal protein RPL5 regulates colon cancer cell proliferation and migration through MAPK/ERK signaling pathway. BMC Mol Cell Biol. 2022;23(1):48.

[12]Li J, Hu S, Zhang Z, Qian L, Xue Q, Qu X. LASP2 is downregulated in human liver cancer and contributes to hepatoblastoma cell malignant phenotypes through MAPK/ERK pathway. Biomed Pharmacother. 2020;127:110154.

[13]Peng WX, Huang JG, Yang L, Gong AH, Mo YY. Linc-RoR promotes MAPK/ERK signaling and confers estrogen-independent growth of breast cancer. Mol Cancer. 2017;16(1):161.

[14]Liu W, Tang J, Gao W, Sun J, Liu G, Zhou J. PPP2R1B abolishes colorectal cancer liver metastasis and sensitizes Oxaliplatin by inhibiting MAPK/ERK signaling pathway. Cancer Cell Int. 2024;24(1):90.

[15]Kim KS, Zhang J, Arrieta VA, et al. MAPK/ERK signaling in gliomas modulates interferon responses, T cell recruitment, microglia phenotype, and immune checkpoint blockade efficacy. Preprint. bioRxiv. 2024;2024.09.11.612571.

[16]Jeon SJ, Choi EY, Han EJ, et al. Piperlongumine induces apoptosis via the MAPK pathway and ERK?mediated autophagy in human melanoma cells. Int J Mol Med. 2023;52(6):115.

[17]An J, Li L, Zhang X. Curcusone C induces apoptosis in endometrial cancer cells via mitochondria-dependent apoptotic and ERK pathway. Biotechnol Lett. 2021;43(1):329-338.

[18]Yano S, Wu S, Sakao K, Hou DX. Involvement of ERK1/2-mediated ELK1/CHOP/DR5 pathway in 6-(methylsulfinyl)hexyl isothiocyanate-induced apoptosis of colorectal cancer cells. Biosci Biotechnol Biochem. 2019;83(5):960-969.

[19]Liu F, Feng XX, Zhu SL, et al. Sonic Hedgehog Signaling Pathway Mediates Proliferation and Migration of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via MAPK/ERK Signaling Pathway. Front Immunol. 2018;9:2847.

[20]Chen J, Luo X, Liu M, et al. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204. RNA Biol. 2021;18(5):657-668.

[21]Zheng R, Kong M, Wang S, He B, Xie X. Spermine alleviates experimental autoimmune encephalomyelitis via regulating T cell activation and differentiation. Int Immunopharmacol. 2022;107:108702.

[22]Gao W, Wang C, Yu L, et al. Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. Biomed Res Int. 2019;2019:6769789.

[23]Guo M, Wu H, Zhang J, et al. Baicalin n-butyl ester alleviates inflammatory bowel disease and inhibits pyroptosis through the ROS/ERK/P-ERK/NLRP3 pathway in vivo and in vitro. Biomed Pharmacother. 2025;186:118012.

[24]Adami E, Viswanathan S, Widjaja AA, et al. IL11 is elevated in systemic sclerosis and IL11-dependent ERK signalling underlies TGFβ-mediated activation of dermal fibroblasts. Rheumatology (Oxford). 2021;60(12):5820-5826.

[25]Luo Y, Jiang N, May HI, et al. Cooperative Binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the Pathogenesis of Cardiac Hypertrophy. Circulation. 2021;144(1):34-51.

[26]Ye J, Yan S, Liu R, et al. CMTM3 deficiency induces cardiac hypertrophy by regulating MAPK/ERK signaling. Biochem Biophys Res Commun. 2023;667:162-169.

[27]Hu B, Song JT, Ji XF, Liu ZQ, Cong ML, Liu DX. Sodium Ferulate Protects against Angiotensin II-Induced Cardiac Hypertrophy in Mice by Regulating the MAPK/ERK and JNK Pathways. Biomed Res Int. 2017;2017:3754942.

[28]Munjal C, Jegga AG, Opoka AM, et al. Inhibition of MAPK-Erk pathway in vivo attenuates aortic valve disease processes in Emilin1-deficient mouse model. Physiol Rep. 2017;5(5):e13152.

[29]Huang Y, Liu M, Liu C, Dong N, Chen L. The Natural Product Andrographolide Ameliorates Calcific Aortic Valve Disease by Regulating the Proliferation of Valve Interstitial Cells via the MAPK-ERK Pathway. Front Pharmacol. 2022;13:871748.

[30]Chen Y, Ba L, Huang W, et al. Role of carvacrol in cardioprotection against myocardial ischemia/reperfusion injury in rats through activation of MAPK/ERK and Akt/eNOS signaling pathways. Eur J Pharmacol. 2017;796:90-100.

[31]Fu C, Wang M, Lu Y, et al. Polygonum orientale L. Alleviates Myocardial Ischemia-Induced Injury via Activation of MAPK/ERK Signaling Pathway. Molecules. 2023;28(9):3687.

[32]Ye X, Shao S, Wang Y, Su W. Ginsenoside Rg2 alleviates neurovascular damage in 3xTg-AD mice with Alzheimer's disease through the MAPK-ERK pathway. J Chem Neuroanat. 2023;133:102346.

[33]Wang Z, Chen Y, Li X, Sultana P, Yin M, Wang Z. Amyloid-β1-42 dynamically regulates the migration of neural stem/progenitor cells via MAPK-ERK pathway. Chem Biol Interact. 2019;298:96-103.

[34]Zaman B, Mostafa I, Hassan T, et al. Tolperisone hydrochloride improves motor functions in Parkinson's disease via MMP-9 inhibition and by downregulating p38 MAPK and ERK1/2 signaling cascade. Biomed Pharmacother. 2024;174:116438.

[35]Bravo-San Pedro JM, Niso-Santano M, Gómez-Sánchez R, et al. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70(1):121-136.

[36]D'Amico AG, Maugeri G, Saccone S, et al. PACAP Modulates the Autophagy Process in an In Vitro Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci. 2020;21(8):2943.

[37]Yang L, Lu Y, Zhang Z, et al. Oxymatrine boosts hematopoietic regeneration by modulating MAPK/ERK phosphorylation after irradiation-induced hematopoietic injury. Exp Cell Res. 2023;427(2):113603.

[38]Sheikh AQ, Taghian T, Hemingway B, Cho H, Kogan AB, Narmoneva DA. Regulation of endothelial MAPK/ERK signalling and capillary morphogenesis by low-amplitude electric field. J R Soc Interface. 2013;10(78):20120548.

[39]Liu P, Zhong TP. MAPK/ERK signalling is required for zebrafish cardiac regeneration. Biotechnol Lett. 2017;39(7):1069-1077.

[40]Chen H, Liu N, Hu S, et al. Yeast β-glucan-based nanoparticles loading methotrexate promotes osteogenesis of hDPSCs and periodontal bone regeneration under the inflammatory microenvironment. Carbohydr Polym. 2024;342:122401.

[41]Liu Y, Zhang Y, Zheng Z, et al. Incorporation of NGR1 promotes bone regeneration of injectable HA/nHAp hydrogels by anti-inflammation regulation via a MAPK/ERK signaling pathway. Front Bioeng Biotechnol. 2022;10:992961.

[42]Jin C, Samuelson L, Cui CB, Sun Y, Gerber DA. MAPK/ERK and Wnt/β-Catenin pathways are synergistically involved in proliferation of Sca-1 positive hepatic progenitor cells. Biochem Biophys Res Commun. 2011;409(4):803-807.